Current loop display (flush-type)

Characteristics

Input: 4... 20 mA (current loop)
Option(external supply): $4 \ldots 20 \mathrm{~mA} / 0 \ldots 20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$ Supply: out of current loop

Option: 230 VAC / 115 VAC / 24 VDC (no galvan. insulation)
Limit contacts:
2 open collectors (36 VDC, 150 mA)
2 relays: maximum 5 A (125 VDC / 250 VAC)
Display range maximum: -999... 9999
Adjustment: with 3 keys
Memory: minimum/maximum
Unit: dimension strip (fixed under front foil)
Option: $4^{\text {th }}$ digit programmable as unit $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$
Enclosure: 96×48 flush-type
(installation depth: approx. 55 mm
Protection: IP 65 (front) / IP20 (back)

Technical data

Input

Current loop: Input resistance:

4... 20 mA

Ri_{i} : approx. 850 ohms $(\mathrm{U}=17 \mathrm{~V})$
Voltage across adjustable with jumper
With external supply:

$4 \ldots .20 \mathrm{~mA}$	Ri : approx. 10 ohms
$0 \ldots . .20 \mathrm{~mA}$	Ri : approx. 10 ohms
$0 \ldots 10 \mathrm{~V}$	Ri_{i} : approx. 100 kohms

$0 . . .10 \mathrm{~V}$
Ri : approx. 100 kohms
Accuracy
Resolution:
Measuring fault: Temperature drift: Measuring principle:

Indication

Display:
Overflow/Underflow:
Time of indication:
Memory:

Limit contacts

Electronically:

leakage current:
Mechanically:
switching voltage:
switching current:
continuous current:
Indication:
Adjustment: limit value, hysteresis value and delay times
Fai-safe function:
-999...+9999 digit
$\pm 0,2 \%$ of measuring range, ± 1 digit
100 ppm/K
ramp conversion

7 segments, 14 mm high, red, 4 digits
to HI / to LO
$0,1 \mathrm{~s}-1 \mathrm{~s}-10 \mathrm{~s}$ (adjustable)
minimum / maximum values

2 open collectors (36 VDC, 150 mA)
approx. $0,1 \mathrm{~mA}$
2 relays (changeover contact) minimum: 10 V AC/DC
maximum: 125 VDC / 250 VAC
VA: $0,1 \ldots 1250 /$ W: $0,1 \ldots 120$
A
limit value reached: LED red
limit value not reached: LED green with 3 keys
voltage supply "ON" = contacts active

Ambient conditions

Operating temperature: $\quad 0 . . .+60^{\circ} \mathrm{C}$
Storing temperature: $-20 \ldots+80^{\circ} \mathrm{C}$

Supply

Current loop:
4... 20 mA (9 or 17 VDC voltage accross, adjustable with jumper)
Direct current:
Alternating current: $115 / 230$ VAC, power consumption: $1,5 \mathrm{VA}$

Mechanics

Enclosure:
Mounting: $\quad 96 \times 48 \times 55 \mathrm{~mm}$ (with terminals)
Material enclosure: polycarbonate, self-extinguishing (UL94 V-0)
Color:
Protection: front: IP 65 (with sealing)
Weight:
Connection: 24 VDC $\pm 5 \%$ (maximum 50 mA) (without galvanical insulation)
$96 \times 48 \times 30 \mathrm{~mm}$ (empty) $96 \times 48 \times 55 \mathrm{~mm}$ (with terminals) with plastic clamps in panel back: IP 20 approx: 170 g (type 115/230 VAC) plug-in terminal strip up to $1,5 \mathrm{~mm}^{2}$ interlockable
Programmable features
range of indication / time of indication / decimal point / unit ($\left.{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right) /$ stabilisation zero point / limit value 1 / hysteresis value 1 / delay times 1 / limit value 2 / hysteresis value 2 / delay times 2 / locking of programming / calibration points / TAG number

Possibilities of indication

Programming the decimal point and unit the following scope of representation is possible: xxxx / xxx.x / xx.xx / x.xxx / xxx ${ }^{\circ} \mathrm{C} / \mathrm{xxx}{ }^{\circ} \mathrm{F}$

Applications

The current loop display is particularly for use in ranges where a standard signal is still available. With it's programmable limit value contacts the device is suitable in the whole industrial area.

Ordering code

\section*{| \mathbf{C} | \mathbf{B} | \mathbf{X} | \mathbf{X} | \mathbf{X} | \mathbf{X} | \mathbf{X} | \mathbf{X} | $\mathbf{-}$ | \mathbf{X} | \mathbf{X} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{X} | | | | | | | | | | |}

> *factory-set: indication: $0 \ldots . .250^{\circ} \mathrm{C}$ / time of indication: $1 \mathrm{~s} /$ decimal point: without / unit: ${ }^{\circ} \mathrm{C}$ / stabilisation zero point: 1 / limit value $1: 110^{\circ} \mathrm{C} /$ delay time: $0 \mathrm{~s} /$ hysteresis value $1: 90^{\circ} \mathrm{C} /$ delay time: $5 \mathrm{~s} /$ limit value2: $40^{\circ} \mathrm{C} /$ delay time: $0 \mathrm{~s} /$ hysteresis value $2: 60^{\circ} \mathrm{C} /$ delay time: $1 \mathrm{~s} /$ locking of programming: without / calibration points: without / TAG number: 0
**programming: the possibilities of the technical data can be selected

Dimensions

Connection

